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'~ .lnd shown in Fig. 2b. This yielded a= 75 cm -1. 

'~ ::1in g then that a is directly proportional to 
. .:oncentration, the remaining .theoretical curves, 

-:csponding to 2.6, 5.2, and 14.2 _ ~/l, were. com
:J using a= 150, 300, and 820 em , respectIvely. 

," \'alue of 01 may be computed using the con
;- :s of distilled waterj for Eo = 0.05 1/cm 2

, 

3.7 atm . 

'~ ,re is good agreement between the time vana· ' 
.lnd relative amplitudes of the experimental 
theoretical stress profiles shown in Figs . 2 
3. Due to a large uncertainty in the experi -

:.11 va lue of Eo' it is difficult to compare absolute 
:,rudesj however, there is at least order of 
'I wde agreement. Thus, these resu l t s appear 

.. 'n firm that transient heating is the source of . 
J(oustic transients observed in this study. 
:, authors are indebted to P. E. P arks for his 
, calibrating the aco.ustic detector. 
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- .mplitude of the stress impulse arising from th e 
'" m chang'" of the la ser beam would be about 
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Fig. 3. Theoretical stress impulses produced by 

trans ient heating of somples having vari ous optica I 

absorptivities for (a ) pressure.release boundary condi

tions, and (b ) rigid boundary conditions, at t he illuminated 

interface. 

t IltICA L RESISTANCE OF BARIU~I AT ELEV ATE D PRESSU RE AND TEMPERATURE 

' ;hase transformations; to 67 kb; 

'0 8000c; E) 

-:! rn ental results on the melting and poly

~., of barium at elevateq temperature and 

.~~ Were first reported in 1963, the measure-

• eing made by differential therma l analysis. 2 

• :: d,1 ta on the electrica l resistance of barium 

• j les a t pressures to 67 kilobars (kb) and 
. " .:cs to 800OC. Bridgman has published da ta 
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on room-temperature resistance discontinuities in 
Ba at 17 and 59 kb, 3,4 and more recently, Balchan 

and Drickamer 5 found a sharp discontinui ty in re

sistance near 144 kb . Since it has been tentatively 
assumed that the room-temperature transition a t 
144 kb corresponds to melting, 2,6 it was fe lt that a 

study of the resistance upon ' melting at lower 
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pressures could definitely provide information on 
the validity of this assumption... In fact, our re
sistance melting curves are quite similar to those 
of Stager and Drickamer 6 and our data thus lend 
evidence to the fact that Ba may be liquid at room 

temperature above 144 kb. 
The measurements were made using a tetrahedral 

anvil device described previously. 7,8 The pyro
phyllite sample tetrahedrons contained a graphite 
heater with stainless steel current leads, inside 
of which was placed a cylinder of pyrophyllite, 
boron nitride, or Agel containing both the Ba sample 
and a chromel-alumel thermocouple. The Ba samples 
were extruded from commercial stock with a purity 
of 99+%. Copper or platinum wires were tied around 
the ends of the 380- to 750-p. Ba sa mples to provide 
resistance measurement leads . No correction was 
made for the ef fect of pressure on the emf of the 
chromel-alumel thermocouples. The thermocouple 
was positioned at:>out 0.5 mm from the center of th 'e 
Ba wire and was electrically insulated from it by 
the pyrophyllite, boron nitride, or AgC}. Temperatures 
are thought to be accurate to ±1. 5%. Pressure 
calibration was made in the usual way 7.8 with Bi 
and Tl as well as Ba wires being placed in each of 
the sample cell configurations used. The pressure 
values are believed to be accurate to ±2 .5% and no 
pressure correction due to the elevated tempera ture 
is assumed. All da ta were automatically recorded 
to facilitate analysis. 

The data obtained on melting _and on the Bal-Ball 
transition are shown in Fig. 1. The experimental 
points shown were taken directly from resista nce
temperature curves (isobars) or resistance-pressure 
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Fig. l. Phase diagram of barium as dete rmine d by 

high-pressure, high-temp e rature resistance me asurements. 

The dashed line is the data of Jayaraman and others 

obtained from differential thermal analysis. 
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curves (isotherms) and the solid lines represe: 
what we con s ider to be the best fit to the expt.r. 
mental points. The scatter in the data is though t: 
be ca used by the pressure uncertainty. No da ta .1: 

shown below 20 kb because of equipment limitatl o: . 
at high temperatures in this pressure range . O~: 

melting curve data agree quite closely with th o~ 

of J ayaraman and others, 2 but the Bal-Ball transi ti 
line obta ined in the present work ha s a pronoun c ,·~ 

nega tive slope in contrast with the positive slOt t 
found by differentia l thermal ana lysi s (see Fig. I > 

Repeated attempts failed to show any resis tdo(r 
discontinuities corresponding to the positive s lopi:. 
phase line reported, and it seems unlikely tha t :: 
transition would not show up as a resistance oi 
continuity at eleva ted temperatures. The transiti c~: 

indica ted by res i stance measurements were sharr t: 
at high temperatures and were much less sluggi · ... 
than the room temperature Bal-Ball transition. 1 :;·· 

triple point observed in the present work i s fo~ 
to occur ~ about 35 kb, 700°C, aEp roximately wht'~ r 
--- - 2 th e fusion curve of J a ya raman and others shows. 
slig,ht ~ak in slope Recent high-pressure X-f.l 
studies by Barnett, Bennion , and Ha11 9 indi e.ltt' 
tha t the Ba bcc structure changes to hcp stme n.: · 
at 59 kb, i. e. , at the Bal-BalI transition . 
evidence of the 17-kb resistance transition reportt ' 
by Bridgman 3 was observed in the present wor~ 

If, indeed, our negative sloping curve i s t~;

Bal-Ball transition lin e, then an imporcan t eon ' 
clusion is that the fusion curve determined abo';
about 35 kb is that of Ball. The fusion curve h.l 
a negative slop e that continues to the hight' . 
pressures achievable in our appara tus and if exr, I 

polated to higher pressures would cross the roo 
temperature line in the vicinity of 140 kb . It : 
thus quite possi ble that the resistance trans iti 
near 144 kb and 250C corresponds to me \t!r. . 

Resistance vs temperature curves for the vari ,'. 
phases of Ba are shown in Fig. 2. The trans it!.':' 
corresponding to melting and the Bal-Ball rr .t:\ 
formation are indicated. The me lting cran si! ; 
shows a definite subcooling and sluggishne ss 
decreasing the temperature as was observed .I! 
by Stager and Drickamer6 in their re s istan(" 

c urve at 440 kb. The B a l and [I.'" temperature 
phases show definite metallic behavior, e ach h.\'.·! 
a positive te mperature coefficient of res is t.1r. , 

Our meas ure ments of the resis ta nce of the \I t;" 

phase are very rough, but indic a te a ver y' !o>1" 

positive temperature c oe fficient of re s i s tnnc<: : 
the liquid. T he similarity between the resis ! lr " 
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Fig. 2. Resistance vs temperoture curves for the 

." ous phases of barium. 

: .tlng curves observed at low pressures in the pre
~ c work and those obtained at higher pressures6 

.J support to the tentative conclusion that the 
o 

,·kb transition at 25 C is indicative of melting. 
,Hive identification of this phase as liquid, 
'-e ver, can be made only after high pressure 

x-ray measurements are carried out. If Ba is liquid 
above 140 kb at low temperatures, the technological 
implications would be significant since true hydro
static measurements would be possible in the very 
high pressure range at reasonable temperatures. 
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with the experiments. This work was sponsored 
by the General Dynamics Corporation. 
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{!tECT OBSERVATION OF DISAPPEARANCE AND COLLAPSE OF STACKING-FAULT 

I ETRAHEDRA IN GOLD FOILS DURING ION BO~1BARD~IENT IN THE ELECTRON 

\IICROSCOPE 

(low to room temperature;E) 

',:ox and Hirsch 1 found that defects in the form 
LIcking-fault tetrahedra were produced during 

", hing and subsequent aging of gold. Cotterill 
ochers 2 •3 bombarded quenched and aged Au 

, .It 200C with 1.0- and 3.s-MeV alpha particles 
.pon examining their foils in the electron micro
<: .Ifter the bombardment found that the tetrahedra 
,o llapsed . They suggested that the interstitials 

-. ~t c:d during irradiation migrate to the tetrahedra 
C.lUse them to collapse. To obtain further 

I( ion on the mechanism of collapse of the 
~ Jed and, hopefully, on the temperature of 
' . 'n of interstitial atoms, we have been bom
~ :\u foils in the electron microscope with 

,- I,' 0- ions emanating from coated emission 

filaments. 
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In order to study this ion damage at 
low temperatures as well as at room temperature, 
a liquid helium cooled finger was constructed for 
the microscope. A sample temperature below 300 K 
(but above Is0 K) could be attained, as determined 
by condensing xenon, krypton, argon, or nitrogen 
onto the cold sample during observation. Full 
details of the cold finger including the determination 
of specimen temperatures and the results obtained 
during ion bombardment of annealed copper below 
300 K are given elsewhere.4 ,5 

Stacking-fault tetrahedra were produced in 99.999% 
pure Au foil by quenching from 9sO"C into brine 
at OOC and then aging for one hour at lOOOC. When 
a normal emission filament was used in the electron 
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